Postprocessing module¶
Postprocessing module.
- MARBLE.postprocessing.cluster(data, cluster_typ='kmeans', n_clusters=15, seed=0)[source]¶
Cluster data.
- MARBLE.postprocessing.distribution_distances(data, cluster_typ='kmeans', n_clusters=None, seed=0)[source]¶
Return distance between datasets.
- Returns:
PyG data object containing .out attribute, a nx2 matrix of embedded data clusters: sklearn cluster object dist (cxc matrix): pairwise distances where c is the number of clusters
- Return type:
data
- MARBLE.postprocessing.embed_in_2D(data, embed_typ='umap', manifold=None, seed=0)[source]¶
Embed into 2D via for visualisation.
- Parameters:
data – PyG input data
embed_typl (string, optional) – Embedding algorithm to use (tsne, umap, PCA)
manifold (sklearn object, optional) – Manifold object returned by some embedding algorithms (PCA, umap). Useful when trying to compare datasets.
seed (int, optional) – Random seed. The default is 0.
- Returns:
PyG data object containing emb_2D attribute.